Relief R-CNN: Utilizing Convolutional Feature Interrelationship for Fast Object Detection Deployment
نویسندگان
چکیده
R-CNN style methods are sorts of the state-of-the-art object detection methods, which consist of region proposal generation and deep CNN classification. However, the proposal generation phase in this paradigm is usually time consuming, which would slow down the whole detection time in testing. This paper suggests that the value discrepancies among features in deep convolutional feature maps contain plenty of useful spatial information, and proposes a simple approach to extract the information for fast region proposal generation in testing. The proposed method, namely Relief R-CNN (R-CNN), adopts a novel region proposal generator in a trained R-CNN style model. The new generator directly generates proposals from convolutional features by some simple rules, thus resulting in a much faster proposal generation speed and a lower demand of computation resources. Empirical studies show that R-CNN could achieve the fastest detection speed with comparable accuracy among all the compared algorithms in testing.
منابع مشابه
Is Faster R-CNN Doing Well for Pedestrian Detection?
Detecting pedestrian has been arguably addressed as a special topic beyond general object detection. Although recent deep learning object detectors such as Fast/Faster R-CNN [1, 2] have shown excellent performance for general object detection, they have limited success for detecting pedestrian, and previous leading pedestrian detectors were in general hybrid methods combining hand-crafted and d...
متن کاملDeep feature based contextual model for object detection
Object detection is one of the most active areas in computer vision, which has made significant improvement in recent years. Current state-of-the-art object detection methods mostly adhere to the framework of regions with convolutional neural network (R-CNN) and only use local appearance features inside object bounding boxes. Since these approaches ignore the contextual information around the o...
متن کاملA Two-Dimensional Convolutional Neural Network for Brain Tumor Detection From MRI
Aims: Cancerous brain tumors are among the most dangerous diseases that lower the quality of life of people for many years. Their detection in the early stages paves the way for the proper treatment. The present study aimed to present a two-dimensional Convolutional Neural Network (CNN) for detecting brain tumors under Magnetic Resonance Imaging (MRI) using the deep learning method. Methods & ...
متن کاملMulti-Channel CNN-based Object Detection for Enhanced Situation Awareness
Object Detection is critical for automatic military operations. However, the performance of current object detection algorithms is deficient in terms of the requirements in military scenarios. This is mainly because the object presence is hard to detect due to the indistinguishable appearance and dramatic changes of object’s size which is determined by the distance to the detection sensors. Rec...
متن کاملImprovement for Fast Object Detection Based on Regression Method
Object detection for 2D image based on convolutional neural networks(CNN) has witnessed a conspicuous development in recent five years. Since a famous frame for CNN to achieve image classification, location and detections is developed by Overfeat [19], a main branch for object detection based on region proposals has gradually come into being. Inspired by such work, Ross Girshick et al. [6] esta...
متن کامل